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We present in this paper a derivation of the Lorentz
transformation by invoking the principle of relativity
alone, without resorting to the a priori assumption of the
existence of a universal limiting velocity. Such a velocity
is shown to be a necessary consequence of the first post-
ulate, and the fact that it is not infinite is borne out by
experiment.

1. INTRODUCTION

In the course of teaching special relativity to under-
graduates, the authors have rediscovered the fact that it is
possible to derive the Lorentz transformations from the
first of Einstein’s two postulates alone. That in fact it is
not necessary at all to postulate the concept of a universal
limiting velocity nor in fact to identify it with the speed
of light has been known for a long time.'~® Nevertheless,
these works have not received sufficient emphasis in stu-
dent texts on relativity despite the fact that they allow a
much more acceptable philosophical view point to be
adopted than is possible in any of the numerous ‘‘two
postulate’’ derivations. The transformation derived has
the exact form of the Lorentz transformation with the ex-
ception that the velocity of light ¢ is replaced by a univ-
versal constant o which is not necessarily the same as c.
The Galilean transformation (the case of o=) is ruled
out by experimental evidence.

In view of the general interest shown through the
number of papers which have appeared in this Journal in
the last few years™ ! outlining new ways of teaching the
subject, it does not seem out of place to present here a
completely alternative derivation which has the intrinsic
merit that it avoids any a priori mention of limiting ve-
locities. Our argument rests only on the simple notion of
the isotropy and homogeneity of space and time together
with the relativity postulate. Because our mathematical
deductions do not involve the obscurities of previous au-
thors, but require only the barest minimum of matrix
theory and algebra, we feel that they should be easily un-
derstood by undergraduate students. In the following, we
present our derivation followed by some relevant discus-
sions in Sec. III.
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II. DERIVATION OF LORENTZ TRANSFORMA-
TIONS

Assuming the existence of classical inertial frames, let
S and S’ denote any two such frames in relative motion.
We further assume the usual homogeneity of time, and
homogeneity and isotropy of space. This permits us to con-
clude that there is no loss of physical generality through the
choice of the mathematically simple situation of relative
motion for which the spatial axes of S and S’ coincide at
t =t =0, and for which the spatial origin of §’ moves with
velocity v along the z axis of S.

At this point, we take for granted that all the well
known arguments have been given that lead up to the
linear transformation equations

x!'=x
y'=y

zl=az+pBt

1)

t'=vyz + 6L,

relating the coordinates of arbitrary events, in § and §’ via
constants a, 8, v, 8 which can only depend on v.'* It is
emphasized that none of the arguments require the second
postulate.

We further reduce the number of unknown constants in
the usual way from four to two by requiring that all fixed
spatial points in S’ (for simplicity, the origin) have veloc-
ity v relative to S, and that all fixed spatial points in §
have velocity -v relative to §'.13 Then the nontrivial part
of the transformation [Eq. (l)] may be written in the

matrix form
2! o —-va\ fz
-6 )0 g

The two unknown functions «(v) and y(v) may be shown
to be even and odd functions of v respectively |[i.e..
a(v)=a(-v) and y(v)=— y(-\')]. To see this, we switch the
directions of both the z and z' axes (equivalent to reflec-
tion in the xv plane), and write

. = = _ ot
Zre=—2, Zp)=-2z'.

Since S now moves with velocity -v relative to § . we

have
- (—z’)(Y(—z')> <zr(>
a(-1) L/ 3)

()-Co
i) \y(=0)

However, by merely changing the sign of z and z’ in Eq.
(2) we have the alternative equation

<Zre’>A a(p) +I'(Y(Z')> Zre)
1 _<—y(1‘) a(r) (/ : @
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Comparison of Egs. (3) and (4) leads to the required
conclusion.'* Clearly for v=0, the physical meaning of
the transformation demands that

a@(0)=1 and r(0)=0,

requirements which are consistent with o and 7y being
even and odd functions of v respectively.

To evaluate « and 7y, we now utilize the matrix proper-
ties of the transformation. Thus, using the
notation § 2% S’ to signify that ' moves with velocity v
relative to §', we consider the following sequence and its
transformation matrix:

SY_Z. SI:‘»SII
<a1 —zvia,><oz2 —zvzag>
Y1 /) \Y, @y

<0‘1“2—?’10‘1)’2

A+ a4y,

— o, (v + 1)
) o

F 0y — VY1
where we have used the shorthand notation
a;=a(v,;) and v;=v(v;),

However, since § and S” are both inertial, there must exist
a single velocity v, which relates their motions, and hence
a single transformation of the form:

SﬂSu

<a0 —vooz())
Ve a, ! (6)

Since Egs. (5) and (6) represent the same transformation,
and must therefore be similar in form, we immediately
obtain by equating the diagonal elements of Eq. (5) that

Y1/0101=7,/vy0, (M

and purely from the fact that the LHS of Eq. (7) is a
function of v, only while the RHS is a function of v,
only, we conclude that

Y(v)/va(v)=k, (8)

where k is a universal constant not dependent on v. The
transformations of Egs. (5) and (6) now read

S s gre

1 Vg + Uy
T1-kup
a10y(1 = kv w,) e , (9)
Vi+ 0y 1 '
1—k1)11)2
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and
Sﬂ St
0‘0[ ! - UO].
kvo 1

By equating corresponding elements in Egs. (9) and (10),
we can immediately identify v,, and thereby obtain the
velocity addition law

(10)

vo= (01 +03)/(1 = kvw,), (11)
and the transformation of «fv):
Ol(vo)=01(v1)a(v2)(1 —]\?1)17)2). (12)

Now regardless of the value of & one may always
choose a real number v such that by setting

V= —0y=0,

the denominator in Eq. (11) remains finite, and so lcads
to vo=0. This is equivalent to the successive forward and
inverse transformations

S S5t S,

For this case, using a(vo = 0) = 1, we obtain from Eq.
(12):

a@)a(-v)1+kv?)=1.
Thus,

a@)=(1+kv?)t/? (13)

follows from the even nature of «(v). The negative sign
in front of the square root is automatically excluded by
the condition a(0)=1.

It now remains to show that k can only take zero or
negative real values. For if k is positive, the expression
[Eq. ( I)] leads to the physically absurd result that two

1
—_— — - —— - | _________
kv T
|
|
{
I
1
I
I

Fig. 1. Velocity addition for positive k [Eq. (11)]. Resultant velocity v,
is plotted as a function of v, with v, fixed (and positive).
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velocities in the same direction may add to a velocity in
the reverse direction. We note that for positive k, Eq.
(13) does not impose any restriction on the velocity v
attainable by physical objects, so that the condition
kv,v,>1can in principle always be satisfied. As an aid to
students, it may be instructive to plot qualitatively v, as a
function of v, with v, fixed (and positive, say) for Eq.
(1.

Figure | shows clearly that a positive k violates our
physical intuition about velocity addition. We see that the
resultant velocity v, increases to infinity at v,=1/kv,, at
which point velocity reversal takes place.

The mathematically trivial possibility k=0 simply leads
to the familiar Galilean velocity addition and transforma-
tion laws,

’Uo =Vt U,y
2'=z -vt
tr=t
while the Lorentz transformations follow on
putting k=— 1/o%, with o a positive constant:
a)=(1-v%/o?)y1/2
and

Y(v)= (- v/0?)(1 = v?/a?y1/2,

The Einstein formula for parallel velocity addition also
results [ from Eq. (11)]:

V1+0Uy

—_————— : 2
Vo= with 0<0*<w,
071 +v,p,/0

It follows that o plays the role of a limiting universal
speed, which though unique, is as yet arbitrary, and need
not be identified with the speed of light. The nature of
the Lorentz formulas dictate that no particle may exceed
this limiting speed without leading to imaginary values
for the transformation coefficients o and y. We em-
phasize, however, that this universal speed was not
assumed in deriving the formulas, but follows as a conse-
quence from them. The possibility that o?=% could not
be ruled out on the basis of theory alone, but there is an
abundance of experimental evidence which points to the
fact that o is finite. Among these are experiments on the
relativistic increase in mass of elementary particles with
velocity (e.g., electrons) the limiting electron speeds ob-
served in linear accelerators,!! and the increase in mean
life time of unstable high energy particles (such as me-
sons) in flight in accordance with the time-dilation for-
mula which is easily derivable from the Lorentz transfor-
mation. The fact that the mass of a particle increases with
its speed at all is an indication that the Galilean transfor-
mations (02=) are invalid. Experiments actually show
that the form of dependence of mass on velocity follow
closely that derived from the Lorentz transformation, and
that the limiting velocity o is indistinguishable from the
speed of light ¢ to within present experimental limits of
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accuracy. The basis of special relativity, therefore, ap-
pears to rest on the first postulate alone, together with the
crucial recognition that space and time are not absolute, a
concept which is foreign to Newtonian mechanics. That
the limiting speed o is finite is an experimental fact.

The method presented above derives jointly the Lorentz
coefficients and the velocity addition law without assum-
ing the concept of a universal speed. Rather, such a con-
cept is discovered in the process of derivation. Further-
more, the derivation allows one to ask the question
whether or not light as a physical phenomenon possesses
the limiting speed o, rather than state it as a postulate in
the way of Einstein. Clearly such a question may be
meaningfully asked since the universal constant ¢ can be
determined from experiments not involving light. Such a
standpoint has proved philosophically satisfying to stu-
dents, and this is not diminished by the empirical fact
that o and ¢ (the local velocity of light in vacuo) are as
yet experimentally indistinguishable. Indeed, the possibil-
ity that the photon should possess a nonzero rest mass g,
(first suggested by de Broglie'®~17) cannot be lightly dis-
missed. This would necessitate that ¢ < o, however small
the discrepancy. Recent estimates!® place an upper limit
of we=<4 X 10™8 g to this rest mass. The corresponding
speed for a photon in the optical region would be
c > (1 — 1072%0, suggesting a departure of less than
10 2%« from the limiting speed o, a departure which
would be exceedingly difficult to detect with presently
available techniques. Nevertheless, the implications can-
not be ignored.

To round off this discussion, we mention that in giving
coordinates to events in inertial systems by the usual
method of standard clocks and signals, it is not impera-
tive to conceive of such a signal as being light. Any other
signal which is believed to travel with a characteristic uni-
form speed in the rest frame of the source will also suf-
fice. As an example, one can think of each inertial ob-
server equipped with a standard gun, firing standard bul-
lets with the aid of which inertial clocks spread out in
space may be synchronized. Electromagnetic waves are
generally considered the most suitable signal simply be-
cause they do not require a material medium for their
transmission, and because their speed in vacuum is inde-
pendent of their frequency, intensity, or direction of
propagation.'? The fact that they propagate with the high-
est speed known experimentally is obviously of practical
value, and the invariance of this speed demanded by the
second postulate has given it added theoretical signifi-
cance. Our approach, however, does not require any pre-
conceived notion of special signals. Instead, the Lorentz
transformations are shown to be a manifestation of the
properties of space-time of inertial systems. The concept
of a limiting signal speed arises only as a consequence.
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THE OVERPRODUCTION OF TRUTH

The man of knowledge in our time is bowed under a burden he never imagined he
would ever have: the overproduction of truth that cannot be consumed. For centuries
man lived in the belief that truth was slim and elusive and that once he found it the
troubles of mankind would be over. And here we are in the closing decades of the 20th
century, choking on truth. There has been so much brilliant writing, so many genial
discoveries, so vast an extension and elaboration of these discoveries—yet the mind is
silent as the world spins on its age-old demonic career.
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—Ernest Becker, The Denial of Death
(The Free Press, New York, 1973)
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